Post-viral olfactory loss and parosmia (2024)

1. Frasnelli J, Landis BN, Heilmann S, et al.. Clinical presentation of qualitative olfactory dysfunction. Eur Arch Otorhinolaryngol2004;261:411–5. 10.1007/s00405-003-0703-y [PubMed] [CrossRef] [Google Scholar]

2. Pellegrino R, Mainland JD, Kelly CE, et al.. Prevalence and correlates of parosmia and phantosmia among smell disorders. Chem Senses2021;46:bjab046. 10.1093/chemse/bjab046 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Henkin RI, Larson AL, Powell RD. Hypogeusia, dysgeusia, hyposmia, and dysosmia following influenza-like infection. Ann Otol Rhinol Laryngol1975;84:672–82. 10.1177/000348947508400519 [PubMed] [CrossRef] [Google Scholar]

4. Seiden AM. Postviral olfactory loss. Otolaryngol Clin North Am2004;37:1159–66. 10.1016/j.otc.2004.06.007 [PubMed] [CrossRef] [Google Scholar]

5. Cain WS, Gent JF, Goodspeed RB, et al.. Evaluation of olfactory dysfunction in the Connecticut chemosensory clinical research center. Laryngoscope1988;98:83–8. 10.1288/00005537-198801000-00017 [PubMed] [CrossRef] [Google Scholar]

6. Deems DA, Doty RL, Settle RG, et al.. Smell and taste disorders, a study of 750 patients from the University of Pennsylvania smell and taste center. Arch Otolaryngol Head Neck Surg1991;117:519–28. 10.1001/archotol.1991.01870170065015 [PubMed] [CrossRef] [Google Scholar]

7. Mori, Tsunemasa Aiba, Midori Sugiur J. Clinical study of olfactory disturbance. Acta Oto-Laryngologica1998;118:197–201. 10.1080/00016489850182927 [PubMed] [CrossRef] [Google Scholar]

8. Temmel AFP, Quint C, Schickinger-Fischer B, et al.. Characteristics of olfactory disorders in relation to major causes of olfactory loss. Arch Otolaryngol Head Neck Surg2002;128:635. 10.1001/archotol.128.6.635 [PubMed] [CrossRef] [Google Scholar]

9. Nordin S, Brämerson A, Millqvist E, et al.. Prevalence of parosmia: the Skövde population-based studies. Rhinology2007;45:50–3. [PubMed] [Google Scholar]

10. Suzuki M, Saito K, Min W-P, et al.. Identification of viruses in patients with postviral olfactory dysfunction. Laryngoscope2007;117:272–7. 10.1097/01.mlg.0000249922.37381.1e [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Sugiura, Tsunemasa Aiba, Junko Mori M. An epidemiological study of postviral olfactory disorder. Acta Oto-Laryngologica1998;118:191–6. 10.1080/00016489850182918 [PubMed] [CrossRef] [Google Scholar]

12. Konstantinidis I, Haehner A, Frasnelli J, et al.. Post-infectious olfactory dysfunction exhibits a seasonal pattern. Rhinology2006;44:135–9. [PubMed] [Google Scholar]

13. Vaira LA, Salzano G, Deiana G, et al.. Anosmia and Ageusia: common findings in COVID-19 patients. Laryngoscope2020;130:1787. 10.1002/lary.28692 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Gane SB, Kelly C, Hopkins C. Isolated sudden onset Anosmia in COVID-19 infection. A novel syndromeRhinology2020;58:299–301. 10.4193/Rhin20.114 [PubMed] [CrossRef] [Google Scholar]

15. Spinato G, Fabbris C, Polesel J, et al.. Alterations in smell or taste in mildly symptomatic outpatients with SARS-CoV-2 infection. JAMA2020;323:2089–90. 10.1001/jama.2020.6771 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Saniasiaya J, Islam MA, Abdullah B. Prevalence of olfactory dysfunction in Coronavirus disease 2019 (COVID-19): a meta-analysis of 27,492 patients. Laryngoscope2021;131:865–78. 10.1002/lary.29286 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Vaira LA, Lechien JR, Deiana G, et al.. Prevalence of olfactory dysfunction in D614G, alpha, delta and omicron waves: a psychophysical case-control study. Rhinology2023;61:32–8. 10.4193/Rhin22.294 [PubMed] [CrossRef] [Google Scholar]

18. Hopkins C, Surda P, Vaira LA, et al.. Six month follow-up of self-reported loss of smell during the COVID-19 pandemic. Rhin2020. 10.4193/Rhin20.544 [PubMed] [CrossRef] [Google Scholar]

19. Burges Watson DL, Campbell M, Hopkins C, et al.. Altered smell and taste: anosmia, parosmia and the impact of long COVID-19. PLoS One2021;16:e0256998. 10.1371/journal.pone.0256998 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Boscolo-Rizzo P, Fabbris C, Polesel J, et al.. Two-year prevalence and recovery rate of altered sense of smell or taste in patients with mildly symptomatic COVID-19. JAMA Otolaryngol Head Neck Surg2022;148:889. 10.1001/jamaoto.2022.1983 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Boscolo-Rizzo P, Hopkins C, Menini A, et al.. Parosmia assessment with structured questions and its functional impact in patients with long-term COVID-19–related olfactory dysfunction. Int Forum Allergy Rhinol2022;12:1570–4. 10.1002/alr.23054 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Landis BN, Frasnelli J, Croy I, et al.. Evaluating the clinical usefulness of structured questions in parosmia assessment. Laryngoscope2010;120:1707–13. 10.1002/lary.20955 [PubMed] [CrossRef] [Google Scholar]

23. Doty RL, Wylie C, Potter M, et al.. Clinical validation of the olfactory detection threshold module of the snap & sniff® olfactory test system. Int Forum Allergy Rhinol2019;9:986–92. 10.1002/alr.22377 [PubMed] [CrossRef] [Google Scholar]

24. Neumann C, Tsioulos K, Merkonidis C, et al.. Validation study of the "Sniffin' sticks" olfactory test in a British population: a preliminary communication. Clin Otolaryngol2012;37:23–7. 10.1111/j.1749-4486.2012.02431.x [PubMed] [CrossRef] [Google Scholar]

25. Doty RL, Shaman P, Kimmelman CP, et al.. University of Pennsylvania smell identification test: a rapid quantitative olfactory function test for the clinic. Laryngoscope1984;94:176–8. 10.1288/00005537-198402000-00004 [PubMed] [CrossRef] [Google Scholar]

26. Iannilli E, Leopold DA, Hornung DE, et al.. Advances in understanding parosmia: an fMRI study. ORL J Otorhinolaryngol Relat Spec2019;81:185–92. 10.1159/000500558 [PubMed] [CrossRef] [Google Scholar]

27. Welge-Lüssen A, Wolfensberger M. Olfactory disorders following upper respiratory tract infections. Adv Otorhinolaryngol2006;63:125–32. 10.1159/000093758 [PubMed] [CrossRef] [Google Scholar]

28. Jafek BW, Hartman D, Eller PM, et al.. Postviral olfactory dysfunction. American Journal of Rhinology1990;4:91–100. 10.2500/105065890782009497 [CrossRef] [Google Scholar]

29. Yamagishi M, Hasegawa S, Nakano Y. Examination and classification of human olfactory mucosa in patients with clinical olfactory disturbances. Arch Otorhinolaryngol1988;245:316–20. 10.1007/BF00464640 [PubMed] [CrossRef] [Google Scholar]

30. Yamagishi M, Nakamura H, Hasegawa S, et al.. Immunohistochemical examination of olfactory mucosa in patients with olfactory disturbance. Ann Otol Rhinol Laryngol1990;99:205–10. 10.1177/000348949009900309 [PubMed] [CrossRef] [Google Scholar]

31. Douek E, Bannister LH, Dodson HC. Recent advances in the pathology of olfaction. Proc R Soc Med1975;68:467–70. [PMC free article] [PubMed] [Google Scholar]

32. Yamagishi M, Fujiwara M, Nakamura H. Olfactory mucosal findings and clinical course in patients with olfactory disorders following upper respiratory viral infection. Rhinology1994;32:113–8. [PubMed] [Google Scholar]

33. Mori I, Goshima F, Imai Y, et al.. Olfactory receptor neurons prevent dissemination of neurovirulent influenza A virus into the brain by undergoing virus-induced apoptosis. J Gen Virol2002;83:2109–16. 10.1099/0022-1317-83-9-2109 [PubMed] [CrossRef] [Google Scholar]

34. Wang JH, Kwon HJ, Jang YJ. Detection of Parainfluenza virus 3 in turbinate epithelial cells of postviral olfactory dysfunction patients. Laryngoscope2007;117:1445–9. 10.1097/MLG.0b013e318063e878 [PubMed] [CrossRef] [Google Scholar]

35. Tian J, Pinto JM, Cui X, et al.. Sendai virus induces persistent olfactory dysfunction in a murine model of PVOD via effects on apoptosis, cell proliferation, and response to Odorants. PLoS One2016;11:e0159033. 10.1371/journal.pone.0159033 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Durrant DM, Ghosh S, Klein RS. The olfactory bulb: an immunosensory effector organ during neurotropic viral infections. ACS Chem Neurosci2016;7:464–9. 10.1021/acschemneuro.6b00043 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Perlman S, Evans G, Afifi A. Effect of olfactory bulb ablation on spread of a neurotropic coronavirus into the mouse brain. J Exp Med1990;172:1127–32. 10.1084/jem.172.4.1127 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Mohammed AK, Magnusson O, Maehlen J, et al.. Behavioural deficits and serotonin depletion in adult rats after transient infant nasal viral infection. Neuroscience1990;35:355–63. 10.1016/0306-4522(90)90089-m [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Sepahi A, Kraus A, Casadei E, et al.. Olfactory sensory neurons mediate ultrarapid antiviral immune responses in a TrkA-dependent manner. Proc Natl Acad Sci USA2019;116:12428–36. 10.1073/pnas.1900083116 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Kanaya K, Kondo K, Suzukawa K, et al.. Innate immune responses and neuroepithelial degeneration and regeneration in the mouse olfactory mucosa induced by intranasal administration of poly (I: C). Cell Tissue Res2014;357:279–99. 10.1007/s00441-014-1848-2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Boscolo-Rizzo P, Borsetto D, Fabbris C, et al.. Evolution of altered sense of smell or taste in patients with mildly symptomatic COVID-19. JAMA Otolaryngol Head Neck Surg2020;146:729. 10.1001/jamaoto.2020.1379 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Lechien JR, Chiesa-Estomba CM, Place S, et al.. Clinical and epidemiological characteristics of 1420 European patients with mild-to-moderate coronavirus disease 2019. J Intern Med2020;288:335–44. 10.1111/joim.13089 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Vaira LA, Deiana G, Fois AG, et al.. Objective evaluation of Anosmia and Ageusia in COVID-19 patients: Single-Center experience on 72 cases. Head Neck2020;42:1252–8. 10.1002/hed.26204 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Boscolo-Rizzo P, Menegaldo A, Fabbris C, et al.. Six-month Psychophysical evaluation of olfactory dysfunction in patients with COVID-19. Chem Senses2021;46:bjab006. 10.1093/chemse/bjab006 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Vaira LA, Lechien JR, Khalife M, et al.. Psychophysical evaluation of the olfactory function: European multicenter study on 774 COVID-19 patients. Pathogens2021;10:62. 10.3390/pathogens10010062 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Lechien JR, Journe F, Hans S, et al.. Severity of anosmia as an early symptom of COVID-19 infection may predict lasting loss of smell. Front Med2020;7:582802. 10.3389/fmed.2020.582802 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Eliezer M, Hamel A-L, Houdart E, et al.. Loss of smell in patients with COVID-19: MRI data reveal a transient edema of the olfactory clefts. Neurology2020;95:e3145–52. 10.1212/WNL.0000000000010806 [PubMed] [CrossRef] [Google Scholar]

48. Eliezer M, Hautefort C. MRI evaluation of the olfactory clefts in patients with SARS-Cov-2 infection revealed an unexpected mechanism for olfactory function loss. Acad Radiol2020;27:1191. 10.1016/j.acra.2020.05.013 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Niesen M, Trotta N, Noel A, et al.. Structural and metabolic brain abnormalities in COVID-19 patients with sudden loss of smell. Eur J Nucl Med Mol Imaging2021;48:1890–901. 10.1007/s00259-020-05154-6 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Boccaccio A, Menini A, Pifferi S. The cyclic AMP signaling pathway in the rodent main olfactory system. Cell Tissue Res2021;383:429–43. 10.1007/s00441-020-03391-7 [PubMed] [CrossRef] [Google Scholar]

51. Durante MA, Kurtenbach S, Sargi ZB, et al.. Single-cell analysis of olfactory neurogenesis and differentiation in adult humans. Nat Neurosci2020;23:323–6. 10.1038/s41593-020-0587-9 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Graziadei PP, Graziadei GA. Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J Neurocytol1979;8:1–18. 10.1007/BF01206454 [PubMed] [CrossRef] [Google Scholar]

53. Chen M, Shen W, Rowan NR, et al.. Elevated ACE-2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Eur Respir J2020;56:2001948. 10.1183/13993003.01948-2020 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Gupta K, Mohanty SK, Mittal A, et al.. The cellular basis of loss of smell in 2019-nCoV-infected individuals. Brief Bioinformatics2021;22:873–81. 10.1093/bib/bbaa168 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Brann DH, Tsukahara T, Weinreb C, et al.. Non-neuronal expression of SARS-Cov-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv2020;6:eabc5801. 10.1126/sciadv.abc5801 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Khan M, Yoo S-J, Clijsters M, et al.. Visualizing in deceased COVID-19 patients how SARS-Cov-2 attacks the respiratory and olfactory Mucosae but spares the olfactory bulb. Cell2021;184:5932–49. 10.1016/j.cell.2021.10.027 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Bryche B, St Albin A, Murri S, et al.. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-Cov-2 in golden Syrian Hamsters. Brain Behav Immun2020;89:579–86. 10.1016/j.bbi.2020.06.032 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Zazhytska M, Kodra A, Hoagland DA, et al.. Non-cell-autonomous disruption of nuclear architecture as a potential cause of COVID-19-induced Anosmia. Cell2022;185:1052–64. 10.1016/j.cell.2022.01.024 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Rajah MM, Bernier A, Buchrieser J, et al.. The mechanism and consequences of SARS-Cov-2 spike-mediated fusion and syncytia formation. J Mol Biol2022;434:167280. 10.1016/j.jmb.2021.167280 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Stabilini S, Menini A, Pifferi S. Anion and cation permeability of the Mouse TMEM16F calcium-activated channel. Int J Mol Sci2021;22:8578. 10.3390/ijms22168578 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Braga L, Ali H, Secco I, et al.. Drugs that inhibit Tmem16 proteins block SARS-CoV-2 spike-induced syncytia. Nature2021;594:88–93. 10.1038/s41586-021-03491-6 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Hernandez-Clavijo A, Gonzalez-Velandia KY, Rangaswamy U, et al.. Supporting cells of the human olfactory epithelium Co-express the lipid Scramblase Tmem16F and Ace2 and may cause smell loss by SARS-Cov-2 spike-induced Syncytia. Cell Physiol Biochem2022;56:254–69. 10.33594/000000531 [PubMed] [CrossRef] [Google Scholar]

63. Lopez G, Tonello C, Osipova G, et al.. Olfactory bulb SARS-Cov-2 infection is not paralleled by the presence of virus in other central nervous system areas. Neuropathol Appl Neurobiol2022;48:e12752. 10.1111/nan.12752 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Serrano GE, Walker JE, Tremblay C, et al.. SARS-Cov-2 brain regional detection, histopathology, gene expression, and immunomodulatory changes in decedents with COVID-19. J Neuropathol Exp Neurol2022;81:666–95. 10.1093/jnen/nlac056 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Meinhardt J, Radke J, Dittmayer C, et al.. Olfactory Transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci2021;24:168–75. 10.1038/s41593-020-00758-5 [PubMed] [CrossRef] [Google Scholar]

66. Ho C-Y, Salimian M, Hegert J, et al.. Postmortem assessment of olfactory tissue degeneration and microvasculopathy in patients with COVID-19. JAMA Neurol2022;79:544–53. 10.1001/jamaneurol.2022.0154 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. De Melo GD, Lazarini F, Levallois S, et al.. COVID-19-associated olfactory dysfunction reveals SARS-cov-2 neuroinvasion and persistence in the olfactory system. Neuroscience [Preprint]. 10.1101/2020.11.18.388819 [CrossRef]

68. Matschke J, Lütgehetmann M, Hagel C, et al.. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol2020;19:919–29. 10.1016/S1474-4422(20)30308-2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Finlay JB, Brann DH, Abi Hachem R, et al.. Persistent post–COVID-19 smell loss is associated with immune cell infiltration and altered gene expression in olfactory epithelium. Sci Transl Med2022;14:eadd0484. 10.1126/scitranslmed.add0484 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Douaud G, Lee S, Alfaro-Almagro F, et al.. SARS-Cov-2 is associated with changes in brain structure in UK Biobank. Nature2022;604:697–707. 10.1038/s41586-022-04569-5 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Altunisik E, Baykan AH, Sahin S, et al.. Quantitative analysis of the olfactory system in COVID-19: an MR imaging study. AJNR Am J Neuroradiol2021;42:2207–14. 10.3174/ajnr.A7278 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Doty RL. A review of olfactory dysfunctions in man. Am J Otolaryngol1979;1:57–79. 10.1016/s0196-0709(79)80010-1 [PubMed] [CrossRef] [Google Scholar]

73. Christensen MD, Holbrook EH, Costanzo RM, et al.. Rhinotopy is disrupted during the re-Innervation of the olfactory bulb that follows transection of the olfactory nerve. Chem Senses2001;26:359–69. 10.1093/chemse/26.4.359 [PubMed] [CrossRef] [Google Scholar]

74. Parker JK, Kelly CE, Gane SB. Insights into the molecular triggers of parosmia based on gas chromatography Olfactometry. Commun Med (Lond)2022;2:58. 10.1038/s43856-022-00112-9 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Mueller A, Rodewald A, Reden J, et al.. Reduced olfactory bulb volume in post-traumatic and post-infectious olfactory dysfunction. Neuroreport2005;16:475–8. 10.1097/00001756-200504040-00011 [PubMed] [CrossRef] [Google Scholar]

76. Rombaux P, Mouraux A, Bertrand B, et al.. Olfactory function and olfactory bulb volume in patients with postinfectious olfactory loss. Laryngoscope2006;116:436–9. 10.1097/01.MLG.0000195291.36641.1E [PubMed] [CrossRef] [Google Scholar]

77. Bitter T, Siegert F, Gudziol H, et al.. Gray matter alterations in parosmia. Neuroscience2011;177:177–82. 10.1016/j.neuroscience.2011.01.016 [PubMed] [CrossRef] [Google Scholar]

78. Yousefi-Koma A, Haseli S, Bakhshayeshkaram M, et al.. Multimodality imaging with PET/CT and MRI reveals hypometabolism in tertiary olfactory cortex in parosmia of COVID-19. Acad Radiol2021;28:749–51. 10.1016/j.acra.2021.01.031 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Reden J, Mueller A, Mueller C, et al.. Recovery of olfactory function following closed head injury or infections of the upper respiratory tract. Arch Otolaryngol Head Neck Surg2006;132:265. 10.1001/archotol.132.3.265 [PubMed] [CrossRef] [Google Scholar]

80. Lee DY, Lee WH, Wee JH, et al.. Prognosis of postviral olfactory loss: follow-up study for longer than one year. Am J Rhinol Allergy2014;28:419–22. 10.2500/ajra.2014.28.4102 [PubMed] [CrossRef] [Google Scholar]

81. Cavazzana A, Larsson M, Münch M, et al.. Postinfectious olfactory loss: a retrospective study on 791 patients. Laryngoscope2018;128:10–5. 10.1002/lary.26606 [PubMed] [CrossRef] [Google Scholar]

82. Petrocelli M, Cutrupi S, Salzano G, et al.. Six-month smell and taste recovery rates in Coronavirus disease 2019 patients: a prospective psychophysical study. J Laryngol Otol2021;135:436–41. 10.1017/S002221512100116X [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Boscolo-Rizzo P, Hummel T, Hopkins C, et al.. High prevalence of long-term olfactory, gustatory, and chemesthesis dysfunction in post-COVID-19 patients: a matched case-control study with one-year follow-up using a comprehensive psychophysical evaluation. Rhinology2021;59:517–27. 10.4193/Rhin21.249 [PubMed] [CrossRef] [Google Scholar]

84. Vaira LA, Salzano G, Le Bon SD, et al.. Prevalence of persistent olfactory disorders in patients with COVID-19: a psychophysical case-control study with 1-year follow-up. Otolaryngol Head Neck Surg2022;167:183–6. 10.1177/01945998211061511 [PubMed] [CrossRef] [Google Scholar]

85. Tan BKJ, Han R, Zhao JJ, et al.. Prognosis and persistence of smell and taste dysfunction in patients with COVID-19: meta-analysis with parametric cure modelling of recovery curves. BMJ2022;378:e069503. 10.1136/bmj-2021-069503 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Hummel T, Lötsch J. Prognostic factors of olfactory dysfunction. Arch Otolaryngol Head Neck Surg2010;136:347–51. 10.1001/archoto.2010.27 [PubMed] [CrossRef] [Google Scholar]

87. Rombaux P, Huart C, Collet S, et al.. Presence of olfactory event-related potentials predicts recovery in patients with olfactory loss following upper respiratory tract infection. Laryngoscope2010;120:2115–8. 10.1002/lary.21109 [PubMed] [CrossRef] [Google Scholar]

88. Altundag A, Temirbekov D, Haci C, et al.. Olfactory cleft width and volume: possible risk factors for postinfectious olfactory dysfunction. Laryngoscope2021;131:5–9. 10.1002/lary.28524 [PubMed] [CrossRef] [Google Scholar]

89. London B, Nabet B, Fisher AR, et al.. Predictors of prognosis in patients with olfactory disturbance. Ann Neurol2008;63:159–66. 10.1002/ana.21293 [PubMed] [CrossRef] [Google Scholar]

90. Reden J, Maroldt H, Fritz A, et al.. A study on the Prognostic significance of qualitative olfactory dysfunction. Eur Arch Otorhinolaryngol2007;264:139–44. 10.1007/s00405-006-0157-0 [PubMed] [CrossRef] [Google Scholar]

91. Mobley AS, Rodriguez-Gil DJ, Imamura F, et al.. Aging in the olfactory system. Trends Neurosci2014;37:77–84. 10.1016/j.tins.2013.11.004 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Menzel S, Haehner A, Woosch D, et al.. Parosmia as a Predictor of a better olfactory function in COVID-19: a multicentric longitudinal study for upper respiratory tract infections. Eur Arch Otorhinolaryngol2023;280:2331–40. 10.1007/s00405-022-07781-1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Boscolo-Rizzo P, Tofanelli M, Zanelli E, et al.. COVID-19-related quantitative and qualitative olfactory and gustatory dysfunction: long-term prevalence and recovery rate. ORL J Otorhinolaryngol Relat Spec2023;85:67–71. 10.1159/000525861 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Erskine SE, Philpott CM. An unmet need: patients with smell and taste disorders. Clin Otolaryngol2020;45:197–203. 10.1111/coa.13484 [PubMed] [CrossRef] [Google Scholar]

95. Haxel BR, Nisius A, Fruth K, et al.. Defizite der ärztlichen beratung bei riechstörungen. HNO2012;60:432–8. 10.1007/s00106-011-2448-z [PubMed] [CrossRef] [Google Scholar]

96. Simopoulos E, Katotomichelakis M, Gouveris H, et al.. Olfaction-associated quality of life in chronic rhinosinusitis: adaptation and validation of an olfaction-specific questionnaire. Laryngoscope2012;122:1450–4. 10.1002/lary.23349 [PubMed] [CrossRef] [Google Scholar]

97. Said M, Luong T, Jang SS, et al.. Clinical factors associated with lower health scores in COVID-19–related persistent olfactory dysfunction. Int Forum Allergy Rhinol2022;12:1242–53. 10.1002/alr.22978 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Hummel T, Rissom K, Reden J, et al.. Effects of olfactory training in patients with olfactory loss. Laryngoscope2009;119:496–9. 10.1002/lary.20101 [PubMed] [CrossRef] [Google Scholar]

99. Pires Í de AT, Steffens ST, Mocelin AG, et al.. Intensive olfactory training in post-COVID-19 patients: a multicenter randomized clinical trial. Am J Rhinol Allergy2022;36:780–7. 10.1177/19458924221113124 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Vandersteen C, Payne M, Dumas L-É, et al.. Olfactory training in post-COVID-19 persistent olfactory disorders: value normalization for threshold but not identification. J Clin Med2022;11:3275. 10.3390/jcm11123275 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Choi BY, Jeong H, Noh H, et al.. Effects of olfactory training in patients with postinfectious olfactory dysfunction. Clin Exp Otorhinolaryngol2021;14:88–92. 10.21053/ceo.2020.00143 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Altundag A, Cayonu M, Kayabasoglu G, et al.. Modified olfactory training in patients with postinfectious olfactory loss. Laryngoscope2015;125:1763–6. 10.1002/lary.25245 [PubMed] [CrossRef] [Google Scholar]

103. Damm M, Pikart LK, Reimann H, et al.. Olfactory training is helpful in postinfectious olfactory loss: a randomized, controlled, multicenter study. Laryngoscope2014;124:826–31. 10.1002/lary.24340 [PubMed] [CrossRef] [Google Scholar]

104. Hummel T, Stupka G, Haehner A, et al.. Olfactory training changes electrophysiological responses at the level of the olfactory epithelium. Rhinology2018;56:330–5. 10.4193/Rhin17.163 [PubMed] [CrossRef] [Google Scholar]

105. Al Aïn S, Poupon D, Hétu S, et al.. Smell training improves olfactory function and alters brain structure. Neuroimage2019;189:45–54. 10.1016/j.neuroimage.2019.01.008 [PubMed] [CrossRef] [Google Scholar]

106. Kollndorfer K, Fischmeister FPS, Kowalczyk K, et al.. Olfactory training induces changes in regional functional connectivity in patients with long-term smell loss. Neuroimage Clin2015;9:401–10. 10.1016/j.nicl.2015.09.004 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Negoias S, Pietsch K, Hummel T. Changes in olfactory bulb volume following lateralized olfactory training. Brain Imaging Behav2017;11:998–1005. 10.1007/s11682-016-9567-9 [PubMed] [CrossRef] [Google Scholar]

108. Sorokowska A, Drechsler E, Karwowski M, et al.. Effects of olfactory training: a meta-analysis. Rhinology2017;55:17–26. 10.4193/Rhino16.195 [PubMed] [CrossRef] [Google Scholar]

109. Konstantinidis I, Tsakiropoulou E, Constantinidis J. Long term effects of olfactory training in patients with post-infectious olfactory loss. Rhinology2016;54:170–5. 10.4193/Rhino15.264 [PubMed] [CrossRef] [Google Scholar]

110. Hopkins C, Alanin M, Philpott C, et al.. Management of new onset loss of sense of smell during the COVID-19 pandemic-BRS consensus guidelines. Clin Otolaryngol2021;46:16–22. 10.1111/coa.13636 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Patel ZM, Holbrook EH, Turner JH, et al.. International consensus statement on allergy and rhinology: olfaction. Int Forum Allergy Rhinol2022;12:327–680. 10.1002/alr.22929 [PubMed] [CrossRef] [Google Scholar]

112. Webster KE, O’Byrne L, MacKeith S, et al.. Interventions for the treatment of persistent post-COVID-19 olfactory dysfunction. Cochrane Database Syst Rev2022;9:CD013877. 10.1002/14651858.CD013877.pub3 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Hummel T, Whitcroft KL, Andrews P, et al.. Position paper on olfactory dysfunction. Rhinol Suppl2017;54:1–30. 10.4193/Rhino16.248 [PubMed] [CrossRef] [Google Scholar]

114. Liu DT, Sabha M, Damm M, et al.. Parosmia is associated with relevant olfactory recovery after olfactory training. Laryngoscope2021;131:618–23. 10.1002/lary.29277 [PubMed] [CrossRef] [Google Scholar]

115. Nguyen TP, Patel ZM. Budesonide irrigation with olfactory training improves outcomes compared with olfactory training alone in patients with olfactory loss. Int Forum Allergy Rhinol2018;8:977–81. 10.1002/alr.22140 [PubMed] [CrossRef] [Google Scholar]

116. Blomqvist EH, Lundblad L, Bergstedt H, et al.. Placebo-controlled, randomized, double-blind study evaluating the efficacy of fluticasone propionate nasal spray for the treatment of patients with hyposmia/anosmia. Acta Otolaryngol2003;123:862–8. 10.1080/00016480310002140 [PubMed] [CrossRef] [Google Scholar]

117. Kim DH, Kim SW, Kang M, et al.. Efficacy of topical steroids for the treatment of olfactory disorders caused by COVID-19: a systematic review and meta-analysis. Clin Otolaryngol2022;47:509–15. 10.1111/coa.13933 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

118. Schepens EJA, Blijleven EE, Boek WM, et al.. Prednisolone does not improve olfactory function after COVID-19: a randomized, double-blind, placebo-controlled trial. BMC Med2022;20:445. 10.1186/s12916-022-02625-5 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Philpott CM, Erskine SE, Clark A, et al.. A randomised controlled trial of sodium citrate spray for Non-Conductive olfactory disorders. Clin Otolaryngol2017;42:1295–302. 10.1111/coa.12878 [PubMed] [CrossRef] [Google Scholar]

120. Whitcroft KL, Ezzat M, Cuevas M, et al.. The effect of intranasal sodium citrate on Olfaction in Post-Infectious loss: results from a prospective, Placebo-Controlled trial in 49 patients. Clin Otolaryngol2017;42:557–63. 10.1111/coa.12789 [PubMed] [CrossRef] [Google Scholar]

121. Whitcroft KL, Gunder N, Cuevas M, et al.. Intranasal sodium citrate in quantitative and qualitative olfactory dysfunction: results from a prospective, controlled trial of prolonged use in 60 patients. Eur Arch Otorhinolaryngol2021;278:2891–7. 10.1007/s00405-020-06567-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Hummel T, Whitcroft KL, Rueter G, et al.. Intranasal vitamin A is beneficial in post-infectious olfactory loss. Eur Arch Otorhinolaryngol2017;274:2819–25. 10.1007/s00405-017-4576-x [PubMed] [CrossRef] [Google Scholar]

123. Reden J, Lill K, Zahnert T, et al.. Olfactory function in patients with postinfectious and posttraumatic smell disorders before and after treatment with vitamin A: a Double-Blind, Placebo-Controlled, randomized clinical trial. Laryngoscope2012;122:1906–9. 10.1002/lary.23405 [PubMed] [CrossRef] [Google Scholar]

124. Di Stadio A, D’Ascanio L, Vaira LA, et al.. Ultramicronized palmitoylethanolamide and Luteolin supplement combined with olfactory training to treat post-COVID-19 olfactory impairment: a multi-center double-blinded randomized placebo-controlled clinical trial. Curr Neuropharmacol2022;20:2001–12. 10.2174/1570159X20666220420113513 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Yan CH, Rathor A, Krook K, et al.. Effect of omega-3 supplementation in patients with smell dysfunction following endoscopic sellar and parasellar tumor resection: a multicenter prospective randomized controlled trial. Neurosurgery2020;87:E91–8. 10.1093/neuros/nyz559 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Yan CH, Mundy DC, Patel ZM. The use of platelet-rich plasma in treatment of olfactory dysfunction: a pilot study. Laryngoscope Investig Otolaryngol2020;5:187–93. 10.1002/lio2.357 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Yan CH, Jang SS, Lin H-FC, et al.. Use of platelet-rich plasma for COVID-19–related olfactory loss: a randomized controlled trial. Int Forum Allergy Rhinol2023;13:989–97. 10.1002/alr.23116 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Garcia JAP, Miller E, Norwood TG, et al.. Gabapentin improves parosmia after COVID-19 infection. Int Forum Allergy Rhinol2023;13:1034–6. 10.1002/alr.23117 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Post-viral olfactory loss and parosmia (2024)
Top Articles
Latest Posts
Article information

Author: Tish Haag

Last Updated:

Views: 5976

Rating: 4.7 / 5 (47 voted)

Reviews: 94% of readers found this page helpful

Author information

Name: Tish Haag

Birthday: 1999-11-18

Address: 30256 Tara Expressway, Kutchburgh, VT 92892-0078

Phone: +4215847628708

Job: Internal Consulting Engineer

Hobby: Roller skating, Roller skating, Kayaking, Flying, Graffiti, Ghost hunting, scrapbook

Introduction: My name is Tish Haag, I am a excited, delightful, curious, beautiful, agreeable, enchanting, fancy person who loves writing and wants to share my knowledge and understanding with you.