What is \(0^0\), and who decides, and why does it matter? Definitions in mathematics. | (2024)

By Art Duval, Contributing Editor, University of Texas at El Paso

How is \(0^0\) defined? On one hand, we say \(x^0 = 1\) for all positive \(x\); on the other hand, we say \(0^y = 0\) for all positive \(y\). The French language has the Académie françaiseto decide its arcane details. There is no equivalent for mathematics, so there is no one deciding once and for all what \(0^0\) equals, or if it even equals anything at all. But that doesn’t matter. While some definitions are so well-established (e.g., “polynomial”, “circle”, “prime number”, etc.) that altering them only causes confusion, in many situations we can define terms as we please, as long as we are clear and consistent.

Don’t get me wrong; the notion of mathematics as proceeding in a never-ending sequence of “definition-theorem-proof” is essential to our understanding of it, and to its rigorous foundations. My mathematical experience has trained me to ask, “What are the definitions?” before answering questions in (and sometimes out of) mathematics. Yet, while we tell students that the definition needs to come before the proof of the theorem, what students apparently hear is that the definition needs to come before the idea, as opposed to the definition coming from the idea.

Why definitions?

What is a definition anyway? Or rather, what gets defined? We could make a special name for the function that maps \(x\) to \(5x^{17} – 29x^2 + 42\), but we don’t. On the other hand, we give the name “sine function” to \(\sin(x)\), the ratio of the length of the side opposite an angle with measure x to the length of the hypotenuse of a right triangle. We give a name to the sine function, even though it takes much longer to describe than \(5x^{17} – 29x^2 + 42\); in fact, we give it a name in part precisely because it takes longer to describe. If we need to refer to \(5x^{17} – 29x^2 + 42\), it’s not that hard, but we do not want to have to write down that definition of sine every time we use it in a statement or problem. We give definitions to ideas for two related reasons:

Brevity: It’s clearly easier to write “\(\sin(x)\)” instead of the huge sentence above. Further, packing this idea into a single word helps make it easier to chunk ideas in an even longer statement, such as a trigonometric identity.

Repetition: If we have to use the same idea more than once, then giving it a compact name increases the efficiency described above that much more. Sometimes an idea repeats just locally, within a single argument or discussion, and then we might temporarily give it a name; for instance when finding the maximum value \(x e^{-x}\), we would write \(f(x)=x e^{-x}\), so we could then write \(0 =f'(x)\), but we are only using \(f\) this way in this one problem. On the other hand, the ideas that show up over and over again, in many different contexts, such as \(\sin(x)\) or “vector space”, get names that stick.

This begs the question, “Why do certain ideas, or combinations of conditions, repeat?” Consider “vector space”. The idea of \(R^n\) is clear enough, but of all its properties, why focus on the simple rules satisfied by vector addition and scalar multiplication?

Defining terms in mathematics involves more choices than students think.

First, because several additional examples have been found that satisfy these rules, such as the vector space of continuous functions, the vector space of polynomials, and the vector space of polynomials of degree at most 5. Second, because once the key properties that make up the definition are identified, we may find that the proofs only depend on those key properties: The Fundamental Theorem of Linear Algebra, for instance, is true for arbitrary finite-dimensional vector spaces, so we don’t need a separate proof for \(R^n\), for polynomials of degree at most 5, etc. (Purists may argue that all finite-dimensional vector spaces of the same dimension are isomorphic, but this isomorphism is defined in terms of vector addition and scalar multiplication, just reinforcing the significance of those operations.)

Choices

But there are often still choices to be made. Must a vector space include the zero vector, or could it be empty? (Is the empty set a vector space)? For that matter, since vectors are often described as being determined by “a direction and a magnitude” and the zero vector has no direction, is the zero vector even a vector? The answers to these questions are no and yes, respectively, but why? The zero vector is a vector, because it is so helpful for a vector space to be a group under addition, which requires an identity element. (I know — this only takes us back to why are groups defined the way they are. Let’s just take this as a piece of evidence for why groups are an important definition.)

As for the empty vector space, there’s nothing inherently wrong with it, except perhaps for the need for a zero vector as discussed above. (This also takes us back to why groups are not allowed to be empty. Let’s stick to vector spaces for now.) But how would we define the dimension of an empty vector space? How would we define the sum of the empty vector space with another vector space? And then, even if we do make those definitions, how do we reconcile them with this identity?:
\[
\dim (A+B) =\ \dim A\ +\ \dim B\ -\ \dim (A \cap B)
\]

This example shows that, even though we cannot write the proof of a theorem until all the relevant definitions are stated, we do often look ahead at the theorem before settling on the fine points of the definition. At research-level mathematics, we might even modify our definitions substantially to make our theorems stronger, or to deal with potential counterexamples. (For more details on this, read Imre Lakatos’ classic Proofs and Refutations [1].) I will stick to smaller cases where we adjust definitions mostly just to make the theorems easier to state.

More examples

Why is 1 considered to be neither prime nor composite? When you first learn this, it may seem silly. The definition of prime is so simple and elegant — an integer \(n\) is prime if its only factors are 1 and \(n\) — and 1 seems to fit that definition just fine. Why make an exception? The answer lies in the Fundamental Theorem of Arithmetic, that every integer has a unique factorization. Well, except of course that we could change the order of the factors around; for instance, it makes sense to consider \(17 \times 23\) to be the same factorization as \(23 \times 17\). And also we need to leave out any factors of 1, otherwise we might consider \(17 \times 23, 1 \times 17 \times 23, 1 \times 1 \times 17 \times 23\), … to all be different factorizations. If we take a little extra effort at the definition, and rule out 1 as a prime number, then the theorem becomes more elegant to state.

Is a square also a rectangle? In other words, should we define rectangle to include the possibility that the rectangle is a square, or exclude that possibility? When children first learn about shapes, it’s easier to simply categorize shapes, so a shape could be either a rectangle or a square, but not both. But when writing a careful definition of rectangle, it takes more work to exclude the case of a square than to simply allow it. Similarly, theorems about rectangles are easier to state if we don’t have to exclude the special cases where the rectangle happens to be a square: “Two different diameters of a circle are the diagonals of a rectangle” is more elegant than “Two different diameters of a circle are the diagonals of a rectangle, unless the diameters are perpendicular, in which case they are the diagonals of a square.”

Is 0 is a natural number? It doesn’t really matter; just pick an answer, be consistent, and move on. It’s even better if we can use non-ambiguous language instead, such as “positive integers” or “non-negative integers.” To be sure, mathematics is picky, but let’s not be picky about the wrong things.

Finally, what about \(0^0\)? If you just look at limits, you’d be ready to declare that this expression is undefined (the limit of \(x^y\) as \(x\) and \(y\) approach 0 is not defined, even just considering \(x \geq 0\) and \(y \geq 0\)). And that’s fine. But in combinatorics, where I work, setting \(0^0 =1\) makes the binomial theorem (\((x+y)^n = \sum \binom{n}{k} x^k y^{n-k}\)) work in more cases (for instance when \(y=0\)). And so we simply declare \(0^0=1\), at least in combinatorics, even though it might remain undefined in other settings.

(See herefor a list of other “ambiguities” in mathematics definitions.)

In each of these examples, there is a human choice about how to exactly state the definition. This is a great freedom. But, to alter a popular phrase, with great freedom comes great responsibility. If you declare \(0^0\) is a value other than 1, now you are limiting, not expanding, the applicability of the binomial theorem. And if you want to declare that \(\frac{1}{0}\) has any numerical value, you will have to sacrifice at least some of the field axioms in your new number system.

In the classroom

The issues that arise with developing precise mathematical definitions is well-known to mathematicians, but we generally don’t share it with our students enough. If we stop hiding this story from our students, then they will see that mathematics is a human endeavor, and that mathematical subjects are not handed down to us from on high. This can be one factor in convincing students that mathematics, even advanced mathematics, is something they can do, that it is not just reserved for other people. And even students who already “get it” will not be turned off — we should not abandon definition-theorem-proof, we can just pay more attention to sharing why each of our definitions is written the way it is. If students know where a definition comes from, what motivated it, and why we made the choices we did, they may have a better chance of making sense of the idea instead of memorizing the string of words or symbols. (See also my earlier blog post, A Call for More Context.)

An anecdote that Keith Devlin tells, near the end of a blog post about mathematical thinking, illustrates the power of crafting the right definition. To summarize much too briefly, his task was to “look at ways that reasoning and decision making are influenced by the context in which the data arises” in a national security setting. His first step was to “write down as precise a mathematical definition as possible of what a context is.” When he presented his work to government bigwigs, they never got past his first slide, with that definition, because the entire room spent the whole time discussing that one definition; later he was told “That one slide justified having you on the project.”

We might not have the luxury of spending an entire hour discussing a single definition, but we can still let students in on the secret that the definitions are up to us, and that writing them well can make all the difference.

References

[1]Lakatos, Imre. Proofs and refutations. The logic of mathematical discovery. Edited by John Worrall and Elie Zahar. Cambridge University Press, Cambridge-New York-Melbourne, 1976.

What is \(0^0\), and who decides, and why does it matter? Definitions in mathematics. | (2024)

FAQs

Why is zero important in mathematics? ›

Zero is an important number, even though it represents a quantity of nothing! To summarize: Zero is a number between negative numbers and positive numbers. It is necessary as a placeholder in whole numbers and decimal numbers. It represents a place with no amount or null value.

What is 0 0 and why? ›

In ordinary arithmetic, the expression has no meaning, as there is no number which, multiplied by 0, gives a (assuming a≠0), and so division by zero is undefined. Since any number multiplied by zero is zero, the expression 0/0 is also undefined; when it is the form of a limit, it is an indeterminate form. Q.

What is zero in mathematical terms? ›

0 (zero) is a number representing an empty quantity. Adding 0 to any number leaves that number unchanged. In mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and complex numbers, as well as other algebraic structures.

What is the meaning of matter in math? ›

The definition of Matter is anything that has mass and volume (takes up space). For most common objects that we deal with every day, it is fairly simple to demonstrate that they have mass and take up space.

Who invented zero in mathematics? ›

Aryabhatta is credited for using zero in the decimal system and introducing zero in mathematics. Brahmagupta, an astronomer and mathematician from India used zero in mathematical operations like addition and subtraction.

Why is the number zero so important in our math system how would our math system be affected if there were no such thing as zero? ›

In absence of a concept of zero there could have been only positive numerals in computation, the inclusion of zero in mathematics opened up a new dimension of negative numerals. Zero, when used as a counting number (such as zero defect) , means that no such objects are present.

Is 0 0 is infinity? ›

Uh, 0/0 doesn't equal infinity, it's UNDEFINED because if 0/0 = x, then x times 0 = 0, but that's true with every number.

Does 0 0 exist? ›

We can say that zero over zero equals "undefined." And of course, last but not least, that we're a lot of times faced with, is 1 divided by zero, which is still undefined.

Why is 0 0 meaningless? ›

0/0 is undefined. If substituting a value into an expression gives 0/0, there is a chance that the expression has an actual finite value, but it is undefined by this method. We use limits (calculus) to determine this finite value. But we can't just substitute and get an answer.

Who invented pi? ›

The Egyptians calculated the area of a circle by a formula that gave the approximate value of 3.1605 for π. The first calculation of π was done by Archimedes of Syracuse (287–212 BC), one of the greatest mathematicians of the ancient world.

What is the biggest number in the world? ›

A Googolplex is considered to be the biggest number in the world. It is written as 10googol. The number 10googol can also be expressed in the exponential format that will equal 1 0 1 0 100 10^{10^{100}} 1010100.

How useful is zero in our life? ›

Zero helps us understand and explain concepts that do not have physical forms! The number zero is used as a placeholder in the place value system. For example, two zeros before a number indicate a hundred position, while a single zero before a digit indicates a tens position.

Can matter be created or destroyed? ›

Matter can change form through physical and chemical changes, but through any of these changes, matter is conserved. The same amount of matter exists before and after the change—none is created or destroyed. This concept is called the Law of Conservation of Mass.

What is matter in one word? ›

1. that which makes up something, esp a physical object; material. 2. substance that occupies space and has mass, as distinguished from substance that is mental, spiritual, etc. 3.

What is the theory of matter? ›

Overall, the kinetic theory of matter states that all matter is composed of small particles which have space between them and are in random motion. How much energy in the form of motion (i.e. kinetic energy) is within a system of particles determines how that matter is organized and what phase or state it is in.

Why is the value zero important? ›

In the realm of algebra, zero serves as the linchpin for fundamental operations, such as addition and subtraction. It acts as an identity element and plays a crucial role in solving equations and manipulating expressions.

What is significant about zero? ›

The complicated woven into the fabric of various cultures, zero holds symbolic and philosophical significance that exceeds mathematical realms. Across diverse civilizations, zero is not merely a numerical placeholder but a profound symbol representing both nothingness and infinity.

Why is zero significant? ›

(2) Zeros are significant if they: (a) are the last digit of a measurement as long as they are to the right of the decimal point (b) come between two other significant digits. Example 2: 3.70 has three significant digits. The zero is significant because it is the last digit.

What does the number zero symbolize? ›

Before any number, there is zero. As a result, in numerology, zero is often associated with potential and possibilities, and all that comes before the changes. If zeros keep popping up in your life anywhere from receipts to invoices, these appearances may be signaling new opportunities and possibilities.

Top Articles
Latest Posts
Article information

Author: Geoffrey Lueilwitz

Last Updated:

Views: 5683

Rating: 5 / 5 (60 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Geoffrey Lueilwitz

Birthday: 1997-03-23

Address: 74183 Thomas Course, Port Micheal, OK 55446-1529

Phone: +13408645881558

Job: Global Representative

Hobby: Sailing, Vehicle restoration, Rowing, Ghost hunting, Scrapbooking, Rugby, Board sports

Introduction: My name is Geoffrey Lueilwitz, I am a zealous, encouraging, sparkling, enchanting, graceful, faithful, nice person who loves writing and wants to share my knowledge and understanding with you.